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THEORETICAL STUDIES OF LASERS AND CONVERTERS

We have previously examined Doppler broadening and its effects upon the stimulated

emission cross-section aij connecting an upper level (i) with a lower level (j) for an iodine

laser. The stimulated emission cross-section is given by (reference 1),

A2Aij giy (v) (1)
aij -- 8_

where, g_i(v) is the normalized line shape function

=
•" (1+ 4 "L A,., j

(2)

The level transitions for the iodine laser axe illustrated in the figure 1.

intensities of these transitions are illustrated in figure 2.
The Einstein coefficients for the different lines have the transition rates

The relative

A34 = 5.0or

A33 : 2.1a

A32 -- 0.6a

A23 = 2.3a

A22 = 3.0a

A21 = 2.4a

(3)

in units of sec -1, where a = A/7.77 with A = 5.4 + 2.0sec -1. Using

c
= 2.28094(10) TM _ 2.3(10) 4 GHz,

Vo = 1.315246(10)_4
(4)

the laser emission frequencies from Vo are given by

/234 : V 0

v33 = Vo + 0.141c

/232 ---- b'33 -'_ 0.068C

v21 = Vo - 0.427c

v22 = v21 -0.026c

v23 = v22 -0.068c

(5)

and consequently the overall stimulated emission cross-section is given by

O" --

A2 5 3 A2i 7 4 Asi

4_r2Av {-_ _ l + [2 (v__xE_,]2 + T2 _1+ [2 (v__xv__,12}
"= \ AV ] J "= \ All / J

(6)



which is based upon statistical weights of the hyperfine levels (reference 1) and

/Xv = ao + al P (7)

with ao = 2.51(10) 8 V_-/300, al -- 1.88(10) 7 v/T--/300, where p is the pressure in torr, and

T is the temperature in degrees Kelvin. Here n0 is related to the Doppler line width and

al is the pressure broadening coefficient associated with the lasant n - C3F7I.
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Figure 1. Level transitions for iodine.
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Figure 2. Relative intensities for iodine transitions



The Voigt Profile

The Voight profile considers the effect of both Doppler broadening and collision broad-

ing upon the absorption line shape. For homogeneous broadening it is assumed that every

atom behaves in the same way. In this case the line shape function has a Lorentzian form.

If a select group of atoms emit a frequency vii in their rest frame and the rest frame moves

with velocity vz, then their exits a Doppler shift frequency and line shape function for the

group. In particular, a group of atoms identified with a velocity component vz has the

shifted line shape function (references 2,3)

2

g(V, Vz)= 7rAy I [v-v_+v_] 2)1+4L/ Av j (8)

where the fraction of atoms within the velocity range vz and Vz + dvz is given by the

Maxwell-Boltzmann distribution

N - _ exp \ 2kT dvz (9)

Multiplying equations (8) and (9) and integrating over all velocities, produces the Voigt

profile line shape function

( [ ]) exp dvzc_ _rAv 1+4 v-v,.j+_,,j_ 2 \ 2kT
Av

or

gi_(V) "= (2--_)1/2/__ _0
O0

2Avexp ( -M---M-_2_2kT ) dvz

. [(_)_ + 4(_- _,_.+,,.._,_1 •_3 c / J

The above integral is simplified by making the change of variables

(10)

Y2-MV_2kT dY= (M)1/2"_

(2kTln2_ 1/2
ciy = 2vii \ Mc 2 ]

bij = (In 2) 1/2 Av
cij

xi I = 2(In 2) 1/2 v - v_-
cij

dv z (11)

(12)

(13)

(14)
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We can then expressthe line shapefunction in the form

gif(v) -- 7rl/2 At] c¢
2

(15)

Observe that

2uiivz(ln 2) 1/2
_- t/z

C Cij

and consequently we obtain the simplification

M) 1/2 =y (16)

2 [z¢ e -y2 dy

L
gii(t_) 71-3/2 Au 1 + \ b_i ]

(17)

The overall stimulated emission cross-section is then given by

(Az2932 + Azzgz3 + Az4g34)_2 5 (A21921 + A22922 -4- A23923) -{-
7

° : 8--;
1

(IS)

The figures 3,4,5 and 6 are graphs of a vs frequency change from v0 for pressures of

5, 30, 80 and 160 torr and temperature of 293 K.

The equations describing the Voigt profile have been added to the continuous flow

laser model laser simulation program. The results have been compared with the standard

absorption profile reported in an earlier study. There seems to be no advantage to using the

Voigt profile as the laser power output is relatively insensitive to changes in the absorption

cross section at the pressures being considered for a space laser. One disadvantage of

using the Voigt profile is the excessive numerical computations required by the additional

equations.
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SIMULATIONS

The current version of the continuous flow laser model computer program was used

to compare results from the model with experimental results. The Appendix A contains

a fit with the experimental data obtained for the perflouride i - C3F7I. The Appendix

B contains a fit with the experimental data obtained for the perflourides n - C3FTI and

n - C4F9I.

The Appendix C contains a simulation, using the laser model, for a t - C4F9 space

laser which is 5 meters in length. The simulation assumes the laser is fully pumped and
operating at a pressure of 3.6 torr with a solar concentration of 1370 S.C.

The parameters listed in the Appendics have the following meanings: PTO is the

pressure in torr; R2 is reflectivity coefficient of output mirror; OMEG1 is flow velocity

upon entering laser; CON is the concentration is solar constants; LC is the length of the

laser; ZOL is the half length of the pumped region; TO is the initial inlet gas temperature; A

is the laser radius in cm; 0 _< XNRHO < 1 is the fraction of incident pump energy left after

geometry considerations; FRAC is the fraction of incident radiation energy converted to

heat and thermodynamic effects; RAD is the radius along which the numerical integrations

were performed; CHI1 is the photo dissociation rate at a given wavelength; CHI2 is the

photo dissociation rate at another wavelength; CHI3 is postulated third photo dissociation

rate (assumed zero for all fits with experimential data); A00,B00 are coefficients used to

calculate the perflouride specific heats at constant volume; KK1 through KK10 are reaction

rates; QQ1 through QQ5 are quenching coefficients; and CC1 through CC4 are three body
collosion reaction rates.
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APPENDIX A: EXPERIMENTAL AND THEORETICAL CURVES FOR i-C3F7I
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Figure A1 Output power vs pumping power for i-C3FTI.
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Figure A2 Output power vs pumping power for i-C3FTI.
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PT0 =
OMEGI

CO0 =

R1 =

R2 =

TM =
XNRHO

CON =
LC =

ZOL =

A =
R20 =

FRAC =

TO =

RAD=
V1 =

V2 =

TTT2 =

TTT3 =

TTT4 =

TTT5 =

TTT6 =

CHII =
CHI2 =

CHI3 =

KKI =

KK2 =

KK3 =

KK4 =

KK5 =

KK6 =

KK7 =

KK8 =

KK9 =

KKI0 =
AA0=

BB0 =

CCI =

CC2 =

CC3 =
CC4 =

CC5 =

QQI =

QQ2 =
QQ3 =

QQ4 =

QQ5 =

PARAMETERS

3.580000

363.200000

3.900000E+18
1.000000

8.500000E-01

1.500000E-01

1.000000

220.000000

15.000000

7.500000

1.850000

0.000000E+00

4.500000E-04

300.000000

0.000000E+00
0.000000E+00

0.000000E+00

1.000000E+I8

1.000000E+I8

I.O00000E+I8

1.000000E+I8
1.000000E+I8

1.200000E-02
1.200000E-01

0.O00000E+00

1.000000E-14

2.300000E-II

6.500000E-13

3.000000E-16

5.000000E-II

0.000000E+00

3.000000E-19

1.600000E-23
1.000000E+I5

1.000000E+I7

147.230000

1.200000E-03

1.600000E-33

5.700000E-33

0.000000E+00
1.000000

8.000000E-33

1.700000E-17

2.890000E-II
3.700000E-18

4.700000E-16

1.600000E-14

Experimental Calculated
Concentration Power Power

(Watts) (Watts)
220 4.42 5.05

450 9.86 14.7

745 19.8 23.65

1050 26 26.02

1320 30 27.2
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APPENDIX B: EXPERIMENTAL AND THEORETICAL CURVES FOR n-C3F7I and
t-C4F9I
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R1 =

R2 =
TM =

XNRHO =

LC =

ZOL =

A =

R20 =

FRAC =

TO =
RAD=

Vl =

V2 =

TTT2 =

TTT3 =

TTT4 =

TTT5 =

TTT6 =

CHII =

CHI2 =
CHI3 =

KKI =

KK2 =

KK3 =

KK4 =

KK5 =
KK6 =

KK7 =

KK8 =
KK9 =

KKI0 =

AA0=

BB0 =

CCI =

CC2 =

CC3 =
CC4 =

CC5 =

QQI =

QQ2 =

QQ3 =

QQ4 =

QQ5 =

n-C3F7I

1.000000

7.000000E-01

3.000000E-01

1.000000

15.000000
7.500000

1.000000
O.000000E+00

4.500000E-04

300.000000

0.O00000E+O0

0.000000E+00

0.000000E+00

1.000000E+I8

1.000000E+I8
I.O00000E+I8

1.000000E+I8

1.000000E+I8

1.200000E-02

1.200000E-01

0.000000E+00

1.000000E-14

2.300000E-II

2.000000E-12

3.000000E-16

1.000000E-If
0.000000E+00

3.000000E-19

1.600000E-23

1.000000E+I5

1.000000E+I7

147.230000
1.200000E-03

1.600000E-33

5.700000E-33

O.O00000E+00
1.000000

8.000000E-33

1.700000E-17

2.890000E-II

3.700000E-18

4.700000E-16

1.600000E-14

R1 =

R2 =

TM =
XNRHO =

LC =

ZOL =

A =

R20 =

FRAC =

TO =

RAD =

Vl =

V2 =

TTT2 =
TTT3 =

TTT4 =

TTT5 =

TTT6 =

CHI 1 =

CHI2 =

CHI3 =

KKI =

KK2 =

KK3 =

KK4 =
KK5 =

KK6 =

KK7 =

KK8 =

KK9 =

KKI0 =

AA0 =
BB0 =

CCI =

CC2 =

CC3 =
CC4 =

CC5 =

QQI =

QQ2 =

QQ3 =

QQ4 =

QQ5 =
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t-C4F9I

1.000000

7.000000E-01

3.000000E-01

1.000000

15.000000

7.500000

1.000000

0.000000E+00

4.500000E-04

300.000000
0.000000E+00

0.000000E+00
O.O00000E+00

1.000000E+18

I.O00000E+I8

1.000000E+I8

1.000000E+I8

1.000000E+I8

1.320000E-02

1.200000E-01
O.000000E+00

I.O00000E-14

6.000000E-12

3.000000E-14
3.000000E-18

1.000000E-f1

0.000000E+00

3.000000E-19

1.600000E-23

I.O00000E+I4

1.000000E+I6

183.262400
1.398680E-03

1.600000E-33

5.700000E-33
0.000000E+00

1.000000

8.000000E-33

6.100000E-17

2.890000E-II

3.700000E-18

4.700000E-16

1.600000E-14



P

5.6
5.6

6
5.8
6.4

n-C3F7I
CON

450
600

740

925

ii00

OMEGI

663

663

619

640

58O

POWER DENSITY

0.62

0.74

0.74

0.89

0.83

P

9

4.5
4.5

4.2

4.2

t-C4F9I

CON

450
600

740

925

ii00

OMEGI

55O
733

733

707

707

POWER DENSITY

2.52
1.38

1.91

2.38

2.94
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APPENDIX C: SIMULATION OF t-C4F91 FIVE METER SPACE LASER, FULLY
PUMPED OPERATING AT 3.6 TORR WITH A SOLAR

CONCENTRATION OF 1370 SOLAR CONSTANTS
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Figure C1 Power density vs velocity and reflectivity for t-C4FgI.
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Figure C2 Level curves for power density in Figure C1.
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Figure C3 Power density vs velocity and reflectivity for t-C4F9I.

2_
ORI_iNAL PAGE !_

OF POOR QUALITY



%.

D

!
2

£ [
4

t

" 'Sr_ i

J

_5

° Io

tt'3

O_

O

. . . . - _

Z

ii
jt

'6 JJ

J

" 4 j/

i

1t0

108

106

104.

102

I i I i

_ O0 OO

i

0 'C, r-'j _

I C,

, ._

<

Figure C4 Level curves for power density in Figure C3.
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Figure C5 Temperature vs velocity and reflectivity for t-C4F9 I.
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